스위칭 노이즈 감쇄형 고속철도차량 모터블록 스택 개발 Development of switching noise reduction high-speed rail vehicle MOTOR-BLOCK stack 김은기*†. 김형균**

Eungi Kim*†, Hyeonggyun Kim**

초 록 고속철도차량 모듈형 스택 개발 당시 IGBT의 정격용량은 최대 4500V/2400A(모듈형4500V/1200V)였다. 전력회로 구성시 IGBT의 용량이 충분할 경우 스너버회로를 구성할 필요가 없으나, DC Link 전압(DC2800V) 운용상 스너버회로 구성을 적용할 수 밖에 없었다. 스너버캐패시터의용량은 계산에 의해 적정용량을 설정하고 시뮬레이션 또는 실험에 의해 ±용량을 최종 선정하는것이 일반적이다. 개발당시 모터블록 스택의 구조 및 장착부분의 협소한 공간으로 한정된 용량이선정(96 μ F) 될 수 밖에 없었다. 이렇게 개발된 고속철도차량용 모터블록 스택은 10여년 운행해 오면서 스너버캐패시터의 캐패시턴스 감소와 사용환경의 전력사용량 한계로 인해 항상 고장의 위험에 노출되었으며, 실제로 스위칭시에 모터블록 스택의 소손이 연간 고장건수의 40% 이상을 차지하고 있다. 이러한 모터블록 스택의 고질적인 문제를 해결하기 위해 스너버캐패시터의 용량을 증대 $(118\mu$ F)하고, 주변회로를 안정화함으로써 SRT의 안전운행 효율을 획기적으로 향상시킬 수 있다.

주요어: 모터블록 스택, 스너버캐패시터, 캐패시턴스, 전력회로, Vce 피크

1. 서 론

모듈형 추진제어장치의 전력회로 구성은 컨 버터, 쵸퍼, 인버터의 간접변환회로로 구성(이 하 : 모터블록)되며, 모터블록 1대에는 컨버터 스택 4대, 쵸퍼스택 1대, 인버터스택 3대, 총 8대의 스택으로 구성되며, 사용된 IGBT 사양은 Vce(turn-off 시 전압) 전압 4500V, Ic(콜렉터 전류), Irr(역회복 전류)는 1200A이며, 각 상 을 병렬로 구성하여 4500V/2400A로 전력회로 구성하여 사용한다. 전력반도체소자의 용량이 충분할 경우 스너버캐패시터회로를 사용할 필 요가 없으나, 개발당시 모듈형 4500V/1200A가 최대용량이였으며, 순간 피크치 전압이 4500V를 상회하기 때문에 전력회로의 안전성 확보를 위해 스너버캐패시터 회로를 사 용하였다. 스택 구조상 스너버캐패시터의 장착 위치가 협소하여 용량선정에 많은 제약으로 크 기와 용량에 따라 당시 최대용량과 크기를 감 안하여 96mF의 전해캐패시터를 사용하였다.

본 논문에서는 모터블록 스택의 소손 원인을 분석하여 원천적으로 해결하기 위한 최적설계 를 진행하였으며, 고압 스위칭 실험을 통해 이 를 입증하였다.

2. 본 론

2.1 스너버캐패시터 용량산정

전력회로를 구성하는 IGBT를 보다 안전적으로 운용하기 위해서는 Vce(Turn-off 시 전압) 피크 전압을 낮춰 운용하는 것이 중요하며, Vce 피크전압은 스너버캐패시터의 용량을 높이면 감소하게 되나, 용량이 높아질수록 스위칭 딜레이 요소로 작용한다. 개발당시(2012년) 스너버캐패시터의 용량을 변화하여 실험을 진행하였으며, 그 결과는 Table 1.과 같다.

Table 1. 스너버캐패시터 용량산정

용량	Vce	크기	비고
48 μF	3,940V	100×150	용량부족, 장착가능
 96 #F	3,820V	119×170	용량가능, 장착가능
118 µF	3,800V	130×195	용량최적, 장착불가
 192 #F	3,780V	137×200	용량여유, 장착불가
400 µF	3,720V	사각 기둥형	산천적용

Fig. 1. IGBT 스택 스너버캐패시터 장착위치

2.2 모터블록 스택의 고장원인 분석

스너버캐패시터는 사용환경에 따라 수명이 결정된다. 스너버 캐패시터는 고온 및 고압전력회로의 구성으로부터 지속적인 스트레스를 받게 되면 내부 저항이 상승하여 상대적으로 캐패시턴스가 감소하고, 제조사에 따라 차이가 있지만 일반적으로 사용시간까지 거의 일정한 값을 유지(서서히 감소)하다가 임계점(약 5% 또는 10%) 도달 시 급격히 용량이 감소하게 된다. 이때 IGBT의 Turn-on, Turn-off 시 IGBT와 GDU, 스너버캐패시터가 소손되게 된다.

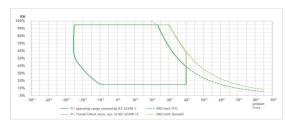


Fig.2. 스너버캐패시터 용량 임계

Fig. 3. 캐패시턴스 감소로 인한 소손 사례

2.3 스위칭 노이즈 감쇄형 IGBT 스택 개발

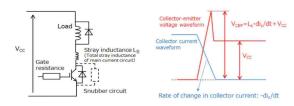


Fig. 4. IGBT응용회로 및 Turn-off시 전압전류 특성

모터블록 스택에 부하전류가 흐르는 동안 IGBT가 Turn-off되면 IGBT의 콜렉터-이미터(Vce) 양단에 스파이크 전압이 생성된다. 스파이크 전압은 IGBT 전류와 회로상에 존재하는 표유인턱턴스(Stray Inductance, Ls)의 급격한 변화로 인해 발생하며, 스파이크 전압의 피크값(Vcep)은 다음의 수식으로 계산된다.

 $Vcep = Ls \cdot di_c / dt + Vcc$ (1)

여기서, Ls = 표유인덕턴스

 di_c = IGBT 콜렉터 전류변화량

dt = 전류변화시간

Vcc = 직류링크 전압

이때 항복전압을 초과하는 스파이크성 전압(Vcep)이 IGBT에 가해지면 IGBT의 소손이 발생하며, 스파이크성 전압을 감소시키기 위한 주요 방법은 다음과 같다.

- ① IGBT의 콜렉터-이미터 단자 사이에 스너버회로를 적용하여 스파이크성 전압 억제
- ②표유인덕턴스(Ls)가 최소가 되도록 IGBT 스택 전력회로 및 구조 최적설계
- ③IGBT의 게이트 단자와 연결되는 GDU의 게이트 저항 값을 높여 IGBT Turn-off 속도를 감소(IGBT-GDU간 특성고려 최적 튜닝) 따라서, 스위칭 노이즈 감쇄형 IGBT 스택개발은 다음과 같은 목표로 진행하였다.
 - ①표유인덕턴스(Ls)가 200nH 이하가 되도록 IGBT 스택 회로 및 구조 최적설계
 - ②라미네이트 부스바 적용
 - ③스너버캐패시터 용량 증설(120 μ F) 및 RC 시정수 최적화
 - ④GDU 국산화 개발을 통한 IGBT-GDU간 최적 튜닝
 - ⑤기존 IGBT 스택과 기구적으로 100% 호환 및 1:1으로 대체품 개발

2.3 기존 스택(96μF)과 개발스택(120μF) 비교 분석 시험

동일한 스택에 스너버캐패시터를 96µF과 118µF 교환 장착하여 각각 같은 조건에서 다음과 같은 실험 결과를 얻었다.

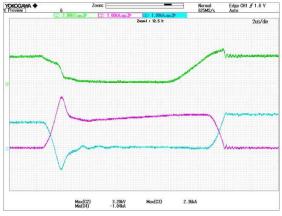
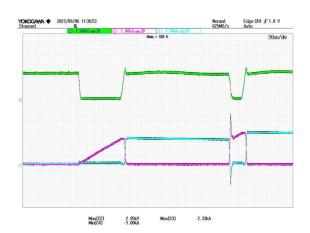



Fig.5. 스너버캐패시터 96μF 스위칭 시험

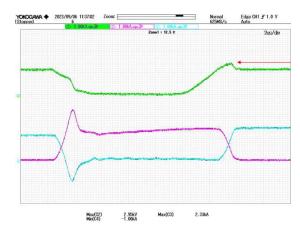


Fig.6. 스너버캐패시터 118 μF 스위칭 시험

3. 결 론

본 논문에서는 SRT 모터블록 스택의 원천적인 장애요소를 보완하고자 연결부스바를 일체화하였고, 적층부스바를 적용하여 저항요소를 최소화 하였으며, 스너버캐패시터를 최적화하여 실험파형과 같이 스위칭 노이즈를 최소 8%이상 감소 시켰다. 향후 실차량에 적용하여 모니터링 후 전체차량에 적용할 예정이다.

참고문헌

- [1] C. SJ, J.MK (2003) A Study On Propulsion Control System for Korea Train Express(KTX-Sancheon), KIPE, pp. 295-296.
- [2] M. H (2002) Analysis and Design of Full-Order Flux Observer for Sensorless Induction Motors, IEEE, pp. 77-82.
- [3] S.JJ, L.YD (2002) Voltage-Oriented Vector Control of Induction Motor: Principle and Performance Improvement, PCC-Osaka, pp. 1340-1345