노반보강재 실내 침하시험 분석

Analysis of in-door settlement test of roadbed-stiffener

엄기영*+,홍기채**, 김주환*, 박상현*, 조영규***, 최유복***

Ky-Young Eum*†,Ki-Chae Hong**, Joo-Hwan Kim*, Sang-Hyun Park*, Young-Gyu Cho***,

Yoo-Bok Choi***

초 록 철도역사 구조물, 분기기구간, 구조물 기초 하부, 저성토된 노반의 지반조건이 연약한 지반일 경우에 대한 설계기법에 관한 연구는 친환경적 기술뿐만 아니라, 시공현장의 공사기간을 단축할 수 있는 연약한 노반보강에 적합한 공법 개발이 필요하다.따라서 본 연구는 직육면체 섬유보 강재를 개발하여 연약지반 저성토 연약노반의 침하에 대한 기술의 보강효과 및 안정성 평가와 검증을 통하여 성능검증 및 실용화를 달성 하고자 한다.

주요어 : 직사각형 섬유보강재,저성토 연약노반, 침하량 분석, 재하시험

1. 서 론

철도역사 구조물, 분기기구간, 구조물 기초하부, 저성토된 노반의 지반조건이 연약한지반일 경우에 대한 설계기법에 관한 연구는 친환경적 기술뿐만 아니라, 시공현장의 공사기간을 단축할 수 있는 연약한 노반보강에적합한 공법 개발이 필요하다.따라서 본 연구는 직육면체 섬유보강재를 개발하여 연약지반 저성토 연약노반의 침하에 대한 기술의보강효과 및 안정성 평가와 검증을 통하여성능검증 및 실용화를 달성 하고자 한다.

2. 본 론

2.1 노반조성

지반보강 성능검증을 위해 한층 다짐두께 20cm, 다짐도 70% 의 연약한 토사노반을 조성하였다. 원지반 및 성토재에 대한 기본물성시

† 교신저자: 한국철도기술연구원 첨단인프라연 구팀 (kyeum@krri.re.ke)

- * 한국철도기술연구원 첨단인프라연구팀
- ** 시지엔지니어링(주)
- *** 한국철도시설공단 수도권본부

험 결과 원지반 및 성도지반의 밀도는 각각 2.724, 2.678g/cm3 산정되었으며 지반토사 및 성토지반토사는 각각 SW 및 SP로 분류되었으며, 최대건조밀도는 각각 2.070 및 1.625g/cm3 산정되었다.

2.2 실대형 시험 계측기 센서 설치

재하하중에 따른 노반의 심도별 침하량을 확인하기 위하여 노반 조성 중 계획 심도에 침하계를 설치하고 노반 조성 후 침하봉을 연결하였다. 직육면체 섬유보강재를 이용한 연약지반에 Fig 1. 과 같이 직육면체 섬유보강재 하부(설치심도 G.L(-)0.89m)에 위치한 레일 하부, 단면 중앙에 각각 lea(DP-1, DP-2), 강화노반(설치심도 G.L(-)0.64m)에 위치한 침목 하부, 레일 하부, 단면 중앙에 각각 1ea(DP-3, DP-4, DP-5) 설치하였다. 비보강 연약지반에 2ea(DP-6, DP-7) 침하계를 보강재 상·하부 단면 침하계와 동일 위치에 설치하였다.또한 가속도계 2ea를 침목 및 노반에 각각 설치하였다.

두 단면에 사용되는 침하계 및 가속도계의 센서 사양은 측정범위 $\pm 30 \text{mm}$ 및 $\pm 10 \text{g}$, $\pm 0.5 \text{g}$ 이며 정밀도는 0.2 % 및 1 % RO($1 \mu \epsilon$), 동적 500 Hz 를 사용하였다. 동적 모니터링 시스

템으로 측정데이터 실시간 분석 CPU모듈, 고 속 Hardware Noise Filtering 장치를 구축하 였다.

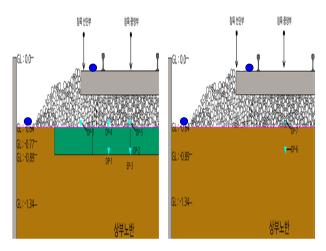


Fig 1. reinforced non-reinforced section

2.3 노반보강재 설치에 따른 침하계측 결과

2.3.1 정재하·동재하 시험

정재하 시험은 목표하중 180kN에 대하여 0kN부터 30kN씩 하중을 증가 시키며 단계로 재하 하였으며, 노반의 침하를 측정 하였다. 하부 심도(보강단면 직하부 설치된 침하계기준) 침하계의 경우 비 보강 단면보다 약 30%의 침하 저감 효과를 보이며 직육면체 섬유 보강재 상부에 설치된 침하계 경우도 하부에 설치된 침하계와 유사한 경향의 측정값을 나타내었다.

동재하 시험은 하중 172kN, 진동 주파수 5Hz(열차속도 300km/h)에 대하여 재하 횟수 200만회를 실시하여, 섬유보강재 유무에 따른 두 단면 모두 동일한 조건으로 동재하 시험을 수행 하였으며 그 결과는 다음과 같다. 하부 심도(보강단면 하부에 설치된 침하계기준) 침하계의 경우 침하량이 평균 약 30.0% 작은 침하량이 발생하였으며 상부 심도(보강단면 상부에 설치된 침하계 기준) 설치된 침하계도 30.0% 정도의 작은 침하가 발생 하였다

본 연구에서는 철도의 정성토 구간에 적용할 노반보강재를 개발하여 노반보강재 설치에 따른 실대형 침하시험을 분석하였으며, 아래와 같은 결과를 확인하였다.

- (1) 보강재 설치시 정,동재하 시험 결과 비보강 단면에 비해 약 30% 정도의 침하 저감효과를 나타내었다.
- (2) 지반 및 열차 운행 조건별 노반보강재 의 적용효과를 검증하여 일반철도 뿐만 아니 라 고속선에서도 활용 가능을 증명하였다.
- (3) 보강단면의 가속도계도 가속도 최대 (40%), 최소(20%) 감퇴효과를 보인다.

후 기

본 연구는 한국철도기술연구원의 기관 주요 사업인 "직육면체 섬유보강재를 이용한 노 반 보강기술공법 실용화 지원(PK1806C14)" 의 연구비 지원으로 수행되었습니다.

참고문헌

- [1] Arenicz, R. M. and R.N. Chowdhury(1988), "Laboratory investigation of earth walls simultaneously reinforced by strips and random reinforcement", Geotech, Testing J., GTJODJ, Vol, 11(4), pp.241-247
- [2] Lee, S. M "Evaluation on stability of reinforced retaining wall constructed with vegetated soilbag facing through connection strength test", Master Thesis, Incheon University, 2012.
- [3] Deutsche Industrie Normen (1993)
 Plattendruckversuch, Deutsches Institut C Institut
 fur Normung e. V, DIN 18 134.
- [4] American Association of State Highway and Transportation Officials (2002) Guide for mechanistic-empirical design, American Association of State Highway and Transportation Officials, National Cooperative Highway Research Program

3. 결 론