국내 · 외 일반철도차량 부품구성체계 비교분석

Comparative analysis for BOM(Bill of materials) of Domestic and Overseas railway vehicle

박재우*, 정효순*

Jae-Woo Park*, Hyo-Soon Jung*

초록 해외 유럽의 철도차량은 부품의 표준화, 모듈화에 연구를 진행해오면서 부품구성체계를 갖추고 있다. 그러나 국내의 철도차량은 각 운영기관 및 차량, 부품 제작사에 따라 부품구성체계가 각자 관리되고 있다. 이는 부품의 호환성, 유지보수 기간이 효율적이지 못하여 비용발생이 크며세계 시장 점유율이 낮은 원인이 될 수 있다고 사료된다. 따라서 본 연구에서는 국내·외 일반철도차량 및 규격을 조사·분석하여 일반철도차량 표준 부품구성체계를 구성하였다. 표준 부품구성체계의 구성은 주요장치 레벨 또는 모듈레벨까지 구성하였고, 하위 레벨은 차량 제작사와 부품 제작사에서 별도로 관리하여 서로 공유할 수 있도록 하였다.

주요어: 일반철도차량, 부품구성체계, 관리체계, 호환성

1. 서 론

전 세계적으로 철도산업시장은 메가시티화, 에너지 위기, 환경의 관심증가로 매년 2 ~ 3% 꾸준히 증가할 것으로 추정된다. 현재 국내 기업은 전 세계 시장점유율 순위가 10위권이 지만 시장 점유율은 2.4%에 불과하다. 가장 큰 시장 점유율을 차지하고 있는 중국의 경우 부품의 표준화 및 모듈화를 선도적으로 구축 하였고 신뢰성향상에 노력을 기여하고 있다. 또한, 유럽은 MODTRAIN이라는 프로젝트를 통 해 부품의 표준화 모듈화에 노력을 가하고 다 품종 소량 생산의 이익 확보라는 접근 방식으 로 효율성을 증대시키고 있다. 반면 국내는 제작사 및 운영기관에 따라 자체 실정에 맞게 기준을 수립하여 BOM을 관리하지만 철도차량 BOM 분류 및 관리체계는 아직 표준화 되어있 다고 볼 수 없다. 따라서 본 연구에서는 점차 증가하고 있는 철도산업 시장진출과 효율성 극대화를 위해 Table 1과 같이 국내·외 규격 을 조사 · 분석하여 일반철도차량 표준 부품구 성체계를 제시하도록 하였다.

* 한국철도공사 연구원 철도부품표준화연구단

2. 본론

2.1 국외 부품구성체계 기준

2.1.1 해외 관련 기준 주요 항목 조사

Table 1. Standard related overseas BOM

구 분	특 징
TSI 1302/2014	• 철도차량 기술사양의 서브시스템 구분 • FBS 작성에 적합하며 BOM 작성에 참고하 기에는 부적합
EN15380-2	'MPG-SPG-SPG'의 단계로 BOM 보다는 가이 드라인 제시/철도차량 모든 부품 미포함 다만, 하나의 기준을 제시하였으므로 BOM 시스템/구성품 분류 기준 참고
ALSTOME (PBS)	• ALSTOM 의 표준 PBS 는 고속차량에 한정 되지 않고 모든 차량에 적용하도록 구성
Amtrak 기술사양	• 미국의 철도운영기관으로 객차의 기술사양서 참고

2.2 국내 고속철도차량 부품구성체계

2.2.1 철도차량기술기준

철도차량기술기준 중 Part 40시리즈가 일반 철도차량으로 구성되어 있으며 Table 2에 나 타내었다.

Table 2. Composition of technical standard for railway vehicle

	<u> </u>
구분	명 칭
Part 42	일반철도차량(객차) 기술기준
Part 43	일반철도차량(화자) 기술기준
Part 44	일반철도차량(전기동차) 기술기준
Part 45	일반철도차량(디젤동차) 기술기준
Part 46	일반철도차량(전기기관차) 기술기준
Part 47	일반철도차량(디젤전기기관차) 기술기준

기술기준의 특징을 살펴보면 세부항목이 '안전'에만 관련되어있어 안전성과 관련 없는 부품들은 규정되어 있지 않아 모든 구성품을 포함하였다고 볼 수 없었다. 또한, FBS의 성격을 가지고 있음을 확인할 수 있었다. 다만, Table 3과 같이 철도차량 관련 산업계 및 학계에서 일반적으로 통용되는 대분류라서 철도차량 부품구성체계의 첫 단계 (Level 1)으로 적합하다고 사료된다.

Table 3. Configuration of major equipment criteria

구분	항목명	구분	항목명
17	370	12	070
4.2	차체 및 설비	4.6	보조전원장치
4.3	주행장치	4.7	차상신호장치
4.4	제동장치	4.8	종합제어장치
4.5	추진장치	4.9	연결장치

2.3 국내 외 관련기준과 기술기준의 비교분석

그 동안 일반철도차량에 대해서는 부품구성 체계에 대한 관심이 다소 적었으나, '17년부 터 부품구성체계를 구축하고 있다. 그러나 일반철도차량의 경우 간선형 전기동차, 객차, 디젤전기기관차, 전기기관차, 화차 등 종류 가 너무 다양하여 본 연구에서 모든 일반철 도차량의 부품구성체계를 제시할 수 없으므 로 Table 4와 같이 최근 도입된 차량위주로 진행하였다.

Table 4. Division of domestic railway vehicle

차 종	차 량 구 분							
기시청	누리로							
간선형 과기도키	ITX 청춘							
전기동차 	ITX 새마을							
	8000 호대							
전기기관차	8100~8200 호대							
	8500 호대							
	4400 호대	GT18B-M						
	7100~7200 호대	EMD GT26CW						
디젤	7300 호대	EMD GT26CW-2						
전기기관차	7400 호대	EMD GT26CW						
	7500 호대	EMD GT26CW						
	7600 호대	GE PowerHoul						

Table 5는 국외기준과 국내 일반철도차량의 부품구성체계를 비교하여 나타내었다. Table 5에서 보듯이 EN-15380-2와 Amtrak기술사양은 설비품목을 세분하였기 때문에 기술기준에 비해 Lvl.1 수준의 항목이 두 배 가까이 많을 것을 알 수 있었다. 기술기준을 분석해보면 주행/제동/추진장치는 일반적으로 구분하였다. 또한, 국내에서는 설비를 하나로 통합하여 취급하였으며 해외는 차상위 단계에서부터실내, 조명, 출입문 등으로 세분화하였다. 특히, 안전설비를 별도로 구분한 것을 확인할수 있었다.

Table 5. Railway vehicle BOMs and Domestic & international standard

구분	계	Lvl.1	Lvl.2	Lvl.3	Lvl.4	Lvl.5	Lvl.6	Lvl.7	Lvl.8	Lvl.9	Lv.10
철도차량 기술기준	73	8	65								
EN15380-2	124	18	106								
ALSTOM 표준 PBS	181	7	21	49	104						
누리로	388	8	106	274							
ITX 청춘	19,552	3	60	1,149	4,006	7,597	5,904	1,210	397	28	8
ITX 새마읔	40,373	8	109	1,454	7,731	11,877	11,735	5,899	1,545	15	
8100~ 8200	232	8	71	153							
8500	7,012	4	12	142	1,992	3,823	903	124	9		
7100 ~ 7500	272	8	64	200							
7600	1814	8	66	587	853	284	6				

3. 일반철도차량 BOM 표준안작성 방안

본 연구에서는 표준안을 위해 철도차량기술 기준과 동시에 최근에 제작된 차량의 자료를 기초 자료로 설정하여 표준안을 작성하고자 하였다. 또한, 다음과 같은 표준안 작성 기준 을 기반으로 작성하였다.

- 1) 도시, 고속, 일반철도차량에서 일관된 형식을 갖춰야 한다.
- 2) BOM은 신·구부품의 취부/탈거를 표현하 기 쉽도록 최소한의 기준을 설정한다.
- 3) BOM 표준안은 부품의 효율적인 관리와 호환성 증대를 목적으로 한다.
- 4) 표준화의 단계의 수준을 미리 지정할 필요가 있다.
- 5) 장치구분 System/Assembly/Component/Parts 등 구분의 명확한 기준 설정이 필요하다.

4. 결 론

본 연구를 통해 각 차종별 부품구성체계는 Level 1, Level 2 등 System, Assembly 단계에서부터 동력형식 및 에너지원에 따라 크게다른 구조를 가지고 있는 부분이 있음을 확인하여 이러한 사항을 주의하여 표준안을 구성하였다. 또한, 표준 부품구성체계의 관리한계는 일반적으로 운영기관과 차량제작사는 Level 6단계, 구성품/부품제작사는 해당 구성품/부품부터 시작해서 해당 제품이 포함하는 전 항목을 관리 활용하면 될 것으로 사료된다.

Table 6. Number of items in step about standard BOM

구분	계	Lvl.1	Lvl.2	Lvl.3	Lvl.4	Lvl.5	Lvl.6	Lvl.7	Lvl.8	Lvl.9
항목수	3370	10	22	106	131	436	1502	926	233	4

마지막으로 향후 확장성을 고려해서 ENI5380-2 의 16 항목을 그대로 두었으며, 다른 차종의 BOM 작성할 때 본 표준(안)을 활용할 수 있도록 하였다. 그러나 가장 중요한 부분은 표준부품구성체계가 산업계, 제작사 및 운영기관에서 일반적으로 통용되는 것이라 사료된다.

후 기

본 논문은 국토교통부 철도기술 연구사업 "철도차량 부품호환 및 표준모듈 개발" 1세 부 "철도차량 부품 인터페이스 표준화 및 모 듈화 연구"과제에 의해 수행 되었습니다.

참고문헌

[1] 한국철도공사 연구원(2018), 일반철도차량 표준 부품구성체계 조사 및 제시