철도역사 안전관리 자동화기술 활용방안 연구

A Study on the Utilization of Automatic Railway Station Safety Management Technology

이상재*, 진장원*[†], 인태명^{**}

SangJaei Lee^{*}, Jangwon ^{*†}, TaeMyeong In^{**}

초 록 전국 철도역사에는 계단 등에서 넘어짐, 승강장 추락, E/S전도, 끼임 등 최근 5년간 크고 작은 사고가 약 1만여 건 발생했다. 바로 지난해에도 약 2천여 건이 발생하였다. 이러한 사고가 발생하면 고객의 신고와 수동적인 모니터링에 의존하여 중대한 사고발생시 골든타임 확보가 어렵 다. 본 연구에서는 이러한 다양한 사고에 신속하게 대응하고 선제적, 예방적 안전관리가 가능한 철도역사 안전관리 자동화 기술을 개발하였다. 본 연구의 최종 목표는 철도역사에서 발생할 수 있 는 다양한 위험/돌발 상황을 실시간 인지하고 대처/전파가 가능한 철도역사 안전관리 자동화 시스 템을 개발하여 빠른 대처와 후속피해를 최소화함으로써 철도이용객의 안전과 철도운영의 선진화를 이루는데 있다. 본 논문에서는 최종 개발한 지능형 인지시스템 기술과 모니터링 및 상황전파 시스 템 기술을 소개하고 활용방안을 제시하고자 한다.

주요어 : 철도안전관리, 철도사상사고, 지능형 영상인식, 상황전파

1. 서 론

본 과제는 "철도운영 및 유지보수 효율화 기술개발"연구단 과제로 2015년 3월24일부 터 2018년 12.31까지 철도역사 안전관리 자 동화 및 설계최적화 기술개발 "제2세부과제 로 시행하였다. 본 연구에서 개발한 철도역 사 안전관리 자동화 시스템은 ICT/인공지능 기술을 활용하여철도역사에서 발생하는 다양 한 이상상황을 실시간으로 인지하는 시스템 과 발생한 이상상황을 역 관계자 및 유관기 관에 빠르게 전과 및 대처하는 시스템을 개 발하는 것을 목표하였다.

2. 본 론

*† 교신저자: 한국교통대학교 * 한국철도공사 인재개발원 ** 한국철도공사 연구원

2.1 연구수행 내용

안전관리 자동화시스템 정의는 철도역사 환경에서 발생할 수 있는 주요 돌발/위험 상황에 대한 인지/관제/전파/대처 및 기록/조회 기능이 하나의 자동화된 단일 시스템형태로 통합된 안전관리시스템이다. 본 연구의 범위는 [표1]과 같다.

Table 1 Contents of this technology's dangerous situation

Accident type	Detail type	Otomation target (cognition)(o,x)
Platform accident	- Platform crash - Entering the safety line	0 0
E/S accident	- E/S Fall - E/S reverse drive	0
Drunken accident	- Fall down, Wandering	0
Security accident	 Control Zone Invasion rail intrusion 	0
Security	 Fire(smoke/flame) 	0

Separation	Evaluation item	Existing Performance Level	This technical level
Intelligent cognitive system	Entry detection rate (false recognition rate)	80% (USA Object Video, Swiss Axis etc)	More than 90% (Less than10%)
	Abnormal situation recognition rate (false recognition rate)	70% (USA Object Video, USABRSLabs etc)	More than 90% (Less than10%)
Multi sensor coping notification	Intelligent CCTV with one sensor	4	8
	Intelligent recognition link GIS image display time	10 Second	6 Second

Table 2 Railway station safety management skill level

2.1.2 연구수행 결과

답러닝 및 Sobel 영상 특징 기법을 적용하여 기존 기술의 한계극복 및 실외 영상분석 난제 극복을 통하여 지능형 영상분석 기술의 성능을 개선하였다. 승강장 추락, 에스컬레이터 사고, 취객 감지 등 인식성능은 인식율 90% 이상, 오 보율 10%이하 이며 철도역사에서 발생할 수 있 는 사고들을 실시간으로 전과 및 실용 가능한 수준으로 본 기술을 개발하였다. 기존기술과 본 기술의 차이를[표 2]와 같이 정리하였다.

2.2 실용화 방안

본 기술은 일반철도 및 고속철도환경에 맞추어 특화한 기술이다. 전국철도역을 대상으로 CCTV 가 설치된 전국철도역에서 활용 가능하도록 개 발하였다. 지능형인지시스템 중 에스컬레이터 이상상황 인지기술 및 고위험 취객 기술은 연구 개발사례가 없는 기술로 원천 특허 및 기술선점 이 가능하다. 아울러 본 기술은 철도역사뿐만 아니라 지하철, 백화점, 쇼핑몰, 관공서 등 기 존의 보안 및 안전관리시스템에도 적용이 가능 한 핵심 기술로서 기술이전 및 시범사업 추진 등이 가능하다. 본 기술은 동대구역, 김제역, 신길역 테스트베드 검증을 시행하였고, GS인증 을 획득하였다. 이러한 신뢰성을 바탕으로 한국 철도 경영진에게 어필되어 스마트철도안전관리 시스템 추진계획 등 철도안전사상사고 대응방안 에 포함되었다. 또한 국토교통부는 국민생명보 호를 위한 철도사고 사상자 감소 대책방안을 내 놓으면서 철도사고 사상자 절반으로 줄이기를 추진하고 있다. 구체적인 실행방안으로 본 과제 에서 개발한 영상인지시스템을 시범적으로 설치· 운영할 계획을 담고 있다. 구축계획안과 관련하 여 [표 3]과 같이 시범사업을 추진할 계획이다.

Table 3 Plan for the construction of this technology

Business	2019	2020	2021	Sum
CCTV Installati on	41 stations (Kyongbu, Hihg speed line)	68 statons (Homam, Jeonla, jungang line)	67 statons (Others line)	176
Install this technolo gy trial	1	3	6	10

3. 결 론

본 과제는 국토부에서 추진하고 있는 사람중심 안전성과 대합실, 에스컬레이터, 계단 등 역사 내 사고 위험요인을 제거하여 예방적, 선제적 안전관리를 통해 사상사고를 줄이겠다는 정책과 제에 부합한다. 또한 국민 삶의 질 개선에 기 여하는 국민 체감형 R&D 과제에 해당하며 철도 역사를 이용하는 국민 중심의 기술개발로 특정 계층이 아닌 전 국민을 대상으로 하고 있다는 점에서 파급효과가 매우 크다고 본다. 본 기술 이 국민의 불편사항을 과학기술로서 해결하는 모범사례가 되길 기대한다.

참고문헌

- [1] Korail Safety Innovation Headquarters(2018.1) Railway Safety Implementation Plan
- [2] Korail Safety Innovation Headquarters(2018.11)Project Plan for Railway Safety Management System