교량상 콘크리트 궤도의 저항력 분포에 따른 부가축응력 분석

Analysis of the Additional Axial Stress of Rail according to the Resistance Distribution of Concrete Tracks on Bridge

sistance Distribution of Concrete Tracks on Druge

이영섭*, 박종찬*, 윤경민**, 임남형[†]

Yeong-Seob Lee*, Jong-Chan Park*, Kyung-MinYun**, Nam-HyoungLim*

초 록 KR C-08080(궤도-교량 종방향 상호작용)에서는 안전성 검토를 위한 해석모델, 제작, 설계 기준등을 제시하고 있으며, 궤도-교량 종방향 상호작용 해석을 통하여 레일의 응력과 변위를 허용 범위 내에 있도록 하고 있다. 이때 교량상 콘크리트 궤도의 종방향 저항력은 수직하중 재하여부에 따른 결정론적인 저항선도가 제시되어있다. 일반적으로 교량상 콘크리트궤도를 부설할 경우에 종 방향 저항력을 감소시킨 체결장치를 설치하여 궤도와 교량의 상호작용력이 최소화되도록 하고 있 다. 그러나 상호작용 해석 시 이러한 영향은 반영하지 못하고 있는 실정이다. 본 연구에서는 실내 실험을 통한 궤도의 종방향 저항력 산정을 위한 기초연구를 수행하였다. 이를 위하여 레일 체결장 치 종방향 저항력 실험을 수행하였으며, 수치해석을 통하여 교량상 궤도의 종방향 저항력분포에 따른 응답 변화를 분석하였다.

주요어 : 궤도교량 상호작용, 부가축응력, 난수추출, 궤도 종저항력

1. 서 론

교량상에 부설된 장대레일은 궤도-교량 상 호작용에 의하여 레일에 부가적으로 응력 및 변위가 발생한다. 따라서 상호작용에 의 한 교량상 궤도의 안정성 확보를 위하여 설 계단계에서 궤도-교량 종방향 상호작용 해 석을 통한 검토를 수행한다. 콘크리트궤도 의 경우에 궤도-교량 종방향 상호작용 해석 시 궤도의 종방향 저항력은 부설된 체결장 치의 종류나 특성을 고려하지 않고 수직하 중 재하여부에 따른 선도로 제시되고 있는 실정이다. 따라서 실제 거동을 모사할 수 있는 저항력 선정이 요구된다. 본 연구에서 는 레일체결장치 종방향 저항실험을 수행하 였으며 궤도-교량 종방향 해석을 통하여 교 량상 저항력분포에 따른 응답을 분석하였다.

↑ 교신저자: 충남대학교 공과대학 토목공학과 (nhrim@cnu.ac.kr) * 충남대학교 공과대학 토목공학과 ** 충남대학교 철도연구소

2. 실내 실험

2.1 체결장치 시험

교량상 콘크리트궤도의 종방향 저항력을 도 출하기 위해 레일 체결장치의 종방향 저항 력 실험을 수행하였다.(Fig. 1) 실험에 의 한 저항력은 종방향 저항력이 수렴되는 최 대 저항력을 사용하였다.

Fig. 1 Test setup for longitudinal resistance

2.2 궤도 종방향 저항력 산정

실제 현장에서의 종방향 저항력은 궤도 길이 방향으로 일정하지 않다. 이러한 변화를 궤 도-교량 종방향 상호작용 해석에서 고려하기 위하여 실험에서 도출된 평균과 표준편차를 이용한 난수를 생성하였다.Fig. 2는몬테카를 로 시뮬레이션을 통해 난수를 산정한 후 교 량상 변화되는 저항력을 도시하였다.

Fig. 2 Resistance according to longitudinal length of track

2.3 경간에 따른 궤도 종저항력 분포

부가축응력은 궤도와 교량의 종방향 상대변 위가 크게 발생하는 곳에서 크게 나타나고, 저항력이 클수록 더 큰 레일의 부가축응력 이 발생한다. Fig.3 은 추출한 종방향 저항 력을 4개의 연속적인 경간에 대한 분포를 나타내며, Fig.4 에서는 각 경간에 따른 종 저항력 분포를 나타낸다.

Fig.3 Longitudinal resistance to 4 span

Fig.4 Longitudinal resistance to 1 span

2.4 종저항력과 온도하중 따른 부가축응력 변화

2.2의 저항력 분포와 온도하중만을 고려하 여, 부가축응력을 산정하였다. Fig.5는 최 대 부가축응력이 우측교대에서 압축으로 발 생하는 것을 나타낸다. 저항력의 평균을 사 용한 값과, 2.3 에서의 부가축응력을 산정 한 값과 유사하게 나타났다. 이와 같은 영 향으로 궤도 종저항력을 평균값을 사용했을 때와 비교하여, 다양한 요인에 의하여 체결 력이 강해진 경우는 약 7%정도 더 큰 부가 축응력이 발생할 수 있다는 것을 Table 1을 통해 나타난다.

Fig.5 Additional axial stress of rail

 Table 1. Maximum additional axial stress of rail

according to longitudinal resistance distribution

	Max. stress of rail	Ratio
	(MPa, compression)	(/Aver.(Exp))
Aver.(Exp)	-30.64	1.00
R.V.	-30.51	1.09
$R.V(H\rightarrow L)$ per 4span	-27.78	0.91
$R.V(L\rightarrow H)$ per 4span	-32.86	1.07
$R.V(H\rightarrow L)$ per 1span	-28.11	0.92
$R.V(L \rightarrow H)$ per 1span	-32.45	1.06

3. 결 론

본 연구에서는 종방향 저항력 실내 실험 결 과를 이용하여 분포에 따른 응답 변화를 분 석하였다. 일반적인 몬테카를로 시뮬레이션 을 통해 도출된 난수를 사용 시 응답과 평 균을 사용할 경우의 응답은 유사하게 나타 났다. 또한 종저항력 분포를 다양하게 가정 시 부가축응력은 최대 7% 차이가 나는 것을 알 수 있다. 설계 시에는 안전성을 고려한 올바른 설계를 위하여 저항력 분포를 다양 하게 고려해야 할 것으로 판단된다.

감사의 글

본 연구는 국토교통부 철도기술연구사업의 연 구비지원(18RTRP-B137866-02)에 의해 수행되었 습니다. 이에 감사드립니다.

참고문헌

- ABAQUS (2016) Standard User's Manual Version 2016. Dassault Systemes.
- [2] KR (2017) Analysis of Track-Bridge Longitudinal Interaction, KR C-08080, Railway Design Guidelines and Handbooks, Korea Rail Network Authority.
- [3] KRS (2013) Rail Fastening System, KRS TR 0014-13R, Korean Railway Standards, Korea Railroad Research Institute.
- [4] Yun, K.M. (2016) Modified Design Method of CWR Tracks on Railway Bridges based on the Track-Bridge Interaction, Thesis for the Degree of Doctor of Philosophy, Chungnam National University.