EULYNX을 적용한 전자연동장치용 SCI 통신 인터페이스 방법 연구

A Study on SCI communication interface method for electronic interlocking using EULYNX

김찬호*, 이길용*, 황경환*, 황청하*, 설찬*, 이기서 †

Chan-Ho Kim*, Gil-Yong Lee*, Kyung-Hwan Hwang*, Chung-Ha Hwang*, Chan Seol*, Key-Seo Lee

초 록 전자연동장치와 인터페이스하는 각 장치는 복잡한 형태의 인터페이스에 의한 통신 방식으로 장치간 충돌 및 호환성 문제가 대두되고 있다. 또한 특정 업체의 인터페이스 없이는 추가 증설 및 역구조 변경에 어려움이 따르는 현실이다. 전자연동장치와 연계 운용되는 각 장치와 인터페이스 문제로 개별 교체도 불가한 상황이며, 외국산 제품과 연결 운용도 불가하다. 국내 전자연동장치와 연계 운용되는 각 장치와 인터페이스 문제는 각 장치별로 전기적, 물리적, 소프트웨어적으로 인터페이스가 상이하여 인터페이스 시스템간의 안전성 확보가 불가한 실정이다. 이런 이유로 국내 철도 환경에 적합한 IP기반 전자연동장치와 각 장치간의 통신 인터페이스를 표준화하는 방법을 제시하고자 한다.

주요어 : EULYNX, IP, SCI, FIS, CTC, RBC, LEU

1. 서 론

유럽에서는 전자연동장치를 중심으로한 신호시스템 인터페이스 표준화 및 실용화를 약20년 전부터 단계적으로 수행하고 있다. 최근에는 철도운영기관을 중심으로 EULYNX Project를 진행 중에 있다. 따라서 국내 전자연동장치와 연계 운용되는 각 장치와 인터페이스 문제로 개별 교체가 불가하며, 외국산 제품과 연결 운용도 불가하다. 이는 각장치별로 전기적, 물리적, 소프트웨어적으로인터페이스가 상이하여 인터페이스 시스템간의 안전성 확보가 불가한 실정이다. 국내 철도 환경에 적합한 IP기반 전자연동장치를 중심으로 각 신호장치간 인터페이스 표준화가필요한 실정이다.

2. 본 론

2.1 전자연동장치 통신 인터페이스 현황

† 교신저자: 철도신호사업연구조합(kslee@kw.ac.kr)

* 철도신호사업연구조합

2.1.1 전자연동장치 환경

전자연동장치와 인터페이스하는 각 장치는 복잡한 형태의 인터페이스에 의한 통신 방식으로 장치간 충돌 및 호환성 문제가 있다. 또한 특정 업체의 인터페이스 없이는 추가 증설 및 역 구조 변경에 어려움이 따른다. 특히 핵심장치의 높은 국외 의존도로 인해 각 장치별 유지보수 정기점검을 통한 예방점검에 많은 어려운 점이 있다. 이런 이유로 각 장치에 장애가 발생시 장애 주체 파악이 어려우며, 기존 장치에 확장 및 개량시 운용사 & 제작사별 인터페이스가 서로 상이하여 전자연동장치와 인터페이스하는 다양한 형태의 신호장치와 통신을 통합하기 위해 유럽의 EULYNX Project에서 적용한 방식으로 각 장치간 통신 인터페이스를 구현할 필요성이 있다.

2.1.2 전자연동장치 인터페이스

전자연동장치를 중심으로 CTC, RBC, 인접 연동장치, 선로전환기 및 유지보수장치와 주요 정보를 교환한다(Fig. 1).

전자연동장치의 다양한 형태의 외부 장치와

인터페이스를 한국형으로 표준화하며, 기존 집중처리방식에서 분산형 IP 제어방식으로 연결하는 전자연동장치는 개방형 네트워크와 폐쇄형 네트워크으로 구분된다.

Fig. 1 유럽 FIS(Functional Interface Specification): 인터페이스 표준사양

개방형은 CTC, RBC, LEU, 인접 전자연동장치 등의 장치와 인터페이스하는 것이며, 폐쇄형은 건널목, 선로전환기, TLDS(Trackcircuit Level Detection system) 등과 인터페이스 하여야 한다(Fig. 2).

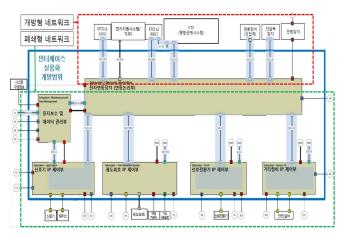


Fig. 2 EULYNX 시스템 구성도

2.2 EULYNX 방식을 적용한 SCI 인터페이스 구성

2.2.1 EULYNX SCI 인터페이스 대상

전자연동장치와 통신하는 각 장치간 또는 인접 장치간의 안전한 통신을 위해 OSI 7 계층 구조에 의한 EULYNX 통신계층별 표준화된 인터페이스 대상은 아래 표와 같다.

Table 1 EULYNX SCI-XX 통신대상

	SCI(standard Communication Interface) - XX(대상기기)			
전자연동 장치	SCI-CC(Command Control System)			
	SCI-ILS(Interlocking System)			
	SCI-IO(General IO)			
	SCI-LS(Light Signal)			
	SCI-LX(Level Crossing System)			
	SCI-P(Point)			

SCI: Standard Communication Interface

2.2.2 EULYNX SCI-XX 통신 계층 구조

통신의 접속에서 완료까지의 과정을 7단계로 구분한 국제표준기구(ISO) 기준의 0SI 7 계층 구조의 통신계층은 아래 좌측에 나타나 있으며, 우측은 EULYNX SCI-XX 통신계층 구조를 나타낸 것이다(Fig. 3).

Fig. 3 EULYNX기준 SCI-XX 계층 구조

2.2.3 EULYNX SCI-XX 메시지 구조

전자연동장치와 통신하는 통신 대상은 아래 4가지의 일반 요구사항을 준수하여야 한다.

- (1) 통신 대상은 연결을 설정할 때 마다 일치하는 버전을 체크해야 한다
- (2) 연결을 설정하는 두 통신 대상의 버전이 동일한 경우에만 통신이 허용된다
- (3) 바이트 순서는 Little-Endian 방식이 적용된다.
- (4) 전송되는 모든 텔레그램은 텔레그램 정의를 준수해야 하며, 특히 텔렉그램 송신자는 지정된 바이트 수만 전송할 수

있으며 명시되지 않은 텔레그램의 정의는 사용할 수 없다.

EULYNX에 언급한 통신 메시지 구조를 활용하여 전자연동장치와 각 장치간 통신하는 메시지 구조는 아래 그림과 같다(Fig. 4).

STX Ler	W / N / N	텔레그램						1000	
	Length	Sequence No	특정프로토콜 타입	메시지 타입	송신 식별자	수신 식별자	페이로드	CRC32	EXT
1Byte	2Byte	1Byte	1Byte	2Byte	20Byte	20Byte	최대 85Byte	2Byte	1Byte

Fig. 4 EULYNX SCI-XX 메시지 구조

- (1) STX : 메시지 프레임의 시작을 나타낸다.
- (2) Length : 메시지 길이로 특정 프로토콜 타입부터 CRC32 앞까지의 길이를 바이트 단위로 표시한다.
- (3) Sequence No : 메시지 전송순서를 나타낸다.
- (4) 특정 프로토콜 타입 : 각 장치간 통신하는 프로토콜 타입을 나타낸다.

Table 2 특정 프로토콜 타입

값	의 미				
0x20	열차검지시스템				
0x30	신호기				
0x40	선로전환기				
0x90	일반 IO				

(5) 메시지 타입

Table 3 메시지 타입

메시지타입	값	송신	수신	목적	
명령어 "버젼체크"	0x0024	전자연동 장치	현장 시스템	버전검사 요청	
메시지 "버젼체크"		5-11	전자연동 장치	버전검사 요청 응답	
며려시	0x0021	전자연동 장치	현장 시스템	상태정보 요청	
명령어 "초기화시작	0x0022	현장 시스템	전자연동 장치	상태메시지 전송시작	
명령어 "초기화완료	0x0023	현장 시스템	전자연동 장치	상태메시지 전송완료	

- (6) 송신 및 수신 식별자 : SCI-XX 인터페이스의 모든 통신 대상은 식별자로 식별한다.
- (7) 페어로드 : 통신 대상 간에 교환되는 정보를 포함한다.
- (8) CRC32 : 메시지 손실 여부를 파악하기 위한 것으로 특정 트로토콜 타입에서

CRC32 앞까지 계산한다.

(9) EXE : 메시지 통신 Frame의 마지막을 나타낸다.

통신 메시지 구조에서 텔레그램에 대한 상세 내용을 살펴보면 명령어 "버젼 체크"의 경우 아래의 텔레그램 구조를 가지고 있다.

Table 4 명령어 "버젼체크" 텔레그램 구조

값	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
00	특정	특정 프로토콜 타입 (1 Byte binart)							
0102	메시지 타입 : 0x0024 (2 Byte binary)								
0322	송신 식별자 (20 Byte ISO IEC 8859-1:1998)								
2342	수신 식별자 (20 Byte ISO IEC 8859-1:1998)								
43	전자연동장치의 버전 (1 Byte binart)								

또한 메시지 "버젼 체크" 및 "초기화 시작"과 명령어 "초기화 요청" 역시 유사한 구조로 구성되어 있다

3. 결 론

전자연동장치와 각 대상 장치간 안전한 통신을 위해 표준화된 SCI-XX 통신인터페이스 방법을 제시하였으며, 향후 각장치별 상세내용을 정의하고 국내 실정에 적합하고 국제적으로 통용되는 방식으로 전자연동장치용 통신 인터페이스 방법을 구체적으로 제시하여 통신 표준사양이되도록 하여 상호운용성을 확보할 것이다.

후 기

본 연구는 국토교통부(국토과학기술진흥원)의 철도기술연구사업 "IP기반 철도 전자연동장치 실용화" 과제의 연구비 지원으로 수행 되었습니다.

참고문헌

- [1] EULYNX Baseline Set2.
- [2] Railroad Signalling Control System. Vol.4
- [3] 한국철도표준규격 KRS SG0015 전자연동장치.
- [4] "한국형 무선기반 열차제어시스템(KRTCS)용 전자연동장치 개발 연구" 2015년 한국철도학 회 추계학술대회.