PSCAD/EMTDC 를 이용한 직류전기철도 급전계통 모델링

Modeling for power feeding system of DC electric railway using the PSCAD/EMTDC

정현기*†

Hyun-Ki Jung^{*†}

초 록 직류전기철도는 DC 1,500V 전차선로 등 급전계통에서 단락 또는 지락사고 발생시 DC over current relay(76i)와 DC under voltage relay(mid-point relay, 80A)를 사용하는 계전 시스템으로 급전선로를 보호하거나, 또는 DC fault selective relay(50F)를 사용하여 보호하는 계전시스템을 주로 적용하고 있다. 본 논문은 이러한 직류전기철도에 적용하는 급전계통의 보호계전시스템에 대한 동작특성을 비교 분석하기 위해 전력계통 해석프로그램인 PSCAD/EMTDC 를 이용하여 직류전기철도의 복선 급전계통을 모델링 하였으며, 시뮬레이션을 수행하였다. 또 한, DC fault selective relay(50F)를 적용하는 보호계전시스템의 유용성도 검증하였다.

주요어 : 직류전기철도, 급전계통, 보호계전시스템, PSCAD/EMTDC, 80A, 50F

1. 서 론

직류전기철도로 건설된 도시철도에서는 DC 1,500V 전차선로 등의 급전계통에서 단락 또는 지락 사고가 발생할 경우, 전력시스템을 보호하기 위해서 예전에는 DC over current relay(76i) 와 DC under voltage relay(mid-point relay, 80A)를 사용하였으나, 근래에는 DC fault selective relay(50F)를 사용하여 보호하는 계전시스템을 적용하고 있다.

본 논문은 이러한 도시철도의 DC 1,500V 급전계통에 적용되고 있는 보호계전시스템에 대하여 신뢰성 확보 및 계통 안정화를 위하여 전력계통 해석프로그램인 PSCAD/EMTDC을 이용하여 직류전기철도의 급전계통을 모델링하고, 각 Case별로 단락전류 및 사고지점의 전압에 대한 시뮬레이션을 통해 보호계전시스템의 동작특성을 비교 분석하고, 나아가 DC fault selective relay(50F)를 적용하는 보호시스템의 유용성을 검증하고자 한다.

[↑] 교신저자: 서울메트로 기술본부(hyunki@seoulmetro.co.kr)

^{*} 서울메트로 기술본부

2.1 직류급전계통 모델링

직류급전 도시철도에서 사용하고 있는 50F(고장선택계전기)와 Midpoint Relay 80A(직류저전 압계전기)의 동작특성 분석 및 검증을 위하여 전력계통 해석프로그램(PSCAD/EMTDC)을 이용하 여 직류급전계통을 모델링 하였다.

여기서 직류급전계통은 전력사업자로부터 3상 22.9kV를 수전하여 도시철도 변전소에서 △-△, △-Y 변압기 결선을 통해 590[Vac]로 변전하고, 정류기로 정류하여 DC 1,500V(무부하시 1,620V)를 급전선로에 공급하는 것으로 복선계통을 모의하기 위해 변압기 용량은 10[MVA]로 설정하고 정류기는 실리콘 다이오드 정류기로 구성하였으며 급전선로는 상하행선의 복선 병렬 회로로 구성하였으며 전체 시스템 구성은 그림 1과 같다.

Fig. 1 Modeling for power feeding system of DC electric railway (double track)

2.2 단락 시뮬레이션

직류전기철도의 급전계통에서 단락사고가 발생하였을 경우, 50F와 80A의 동작 유무를 분석 하기 위해 급전구간 중앙에서 급전선과 레일이 단락 되는 사고를 모의하였다. 실제 급전사고 와 같은 상황을 모의하기 위해 변전소의 간격(L)과 고장저항(A) 값을 변경하여 다음과 같은 경우를 Case A, B로 정하여 시뮬레이션을 수행하였다.

1) Case A : 변전소 간격(L = 4 km), 고장저항(R = 0[Ω], 0.1[Ω]) 일 경우

2) Case B : 변전소 간격(L = 5 km), 고장저항(A = 0[Ω], 0.1[Ω]) 일 경우

2.2.1 Case A 시뮬레이션 결과

변전소 간격이 4 km 일 경우로 모의하여 선로의 고장저항(0[Ω], 0.1[Ω])을 변경하여 시뮬 레이션 하였다. 단락사고는 0.2 초 시점에 발생시켰으며, 모의시험 결과, 각 Case 별 단락전류 와 사고지점의 전압파형은 표 1과 같다.

Accident resistance $\binom{R_{t}}{2}$	Short-circuit current $(I_{5, I_{5, a}}, I_{5, b})$	Accidents voltage	
0 [Ω]	$\begin{array}{c} \begin{array}{c} c \\ c$	2.0k ■ Vfault 1.8k 1.5k 1.3k 2.0k 0.	
0.1 [Ω]	25.0 0 15 0 15a Δ15b 20.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.0k 1.8k 1.5k 1.9k 0.8k 0.5k 0.3k 0.0 0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400	

Table 1 Simulation results of the short-circuit current and accidents voltage due to accident resistance change

고장저항이 Zero 상태인 완전 단락사고(R = 0[Ω])를 모의 시험한 결과, 변압기 및 정류기 용량, 변전소 내부 임피던스, 선로 및 레일 임피던스에 따라 총 단락전류 C는 13.75 [kA]이고 한 변전소에서 고장지점으로 흐르는 전류는 6.88 [kA]로 나타났다. 또한 완전 단락사고 시 사 고지점의 전압은 매우 크게 발생하므로 80A 가 동작하기에 충분한 것으로 나타났다. 하지만 고 장저항(R)이 증가할수록 사고지점의 전압은 점점 낮게 발생하며, 80A 의 동작 값을 850[V]로 설정할 경우 고장저항이 0.1[Ω]보다 큰 단락사고 발생시에는 고장이 감지되지 않은 것으로 나타났다.

또한, 50F 의 동작을 유무를 확인하기 위해 50F 의 동작전류 값을 2 [kA], △t 값을 10 ms 로 설정하여 △I 을 측정하였으며, 이 경우 고장 저항이 큰 단락사고의 경우에도 고장을 감지하는 것으로 나타났다. 표 2 는 사고저항의 변화에 따른 △I 값과 사고지점의 전압을 나타내며, 그 에 대한 50F 및 80A 의 동작여부를 나타낸다.

Accident resistance (R_{f})	Short-circuit current & Accidents voltage (I_{se}, V_{faul})	Accident before	Accident after	Whether of the protection relay operation	
				50F (2kA)	80A (850V)
0 [Ω]	Isa	0 [kA]	5.094 [kA]	0	
	V_{faul}	1820 [V]	138 [V]		0
0.1 [Ω]	Isa	0 [kA]	3.317 [kA]	0	
	V_{faul}	1820 [V]	906 [V]		×

Table 2 Simulation results & whether of the protection relay operation

2.2.2 Case B 시뮬레이션 결과

변전소 간격이 5 km일 경우로 모의하여 고장저항(0[Ω], 0.1[Ω])을 변경하여 시뮬레이션을 수행하였다. 단락사고는 0.2초 시점에 발생시켰으며 시뮬레이션 결과, 각 Case별 단락전류 및 사고지점의 전압과형은 표 3과 같다.

Accident resistance Short-circuit current Accidents voltage (R_f) (IS Isa Ist) (Vfaui) □ Isa ∆<u>lsb</u> o Is Vfaul 30.0 2 0k 25.0 1.8k 20.0 1.5k 15.0 1.3k 10.0 1.0k y (kA) y (V 0 [Ω] 5.0 0.8k 0.0 0.5k--5.0 0.3k -10.0 0.0 --15.0 0.00 0.10 old 0.30 0.40 0.50 0.200 0.000 0.050 0.100 0.150 0.250 0.300 0.350 0.400 I Isa ∆ <u>Isb</u> Vfault 30.0 2 0k 25.0 1.8k 20.0 1.5k 15.0 1.3k 10.0 1.0k y (kA) y (> 0.1 [Ω] 5.0 0.8k 0.0 0.5k -5.0 0.3k -10.0 0.0 --15.0 odd 0.00 0.10 0.30 0.40 0.50 0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400

Table 3 Simulation results of the short-circuit current and accidents voltage due to accident resistance change

고장저항이 Zero상태인 완전 단락사고(R = 0[Ω])의 경우를 모의 시험한 결과, 변압기 및 정류기 용량, 변전소 내부 임피던스, 선로 및 레일 임피던스에 따라 총 단락전류 4는 13.75 [kA]이고, 한 변전소에서 고장지점으로 흐르는 전류는 6.88 [kA]로 나타났다. 또한 완전 단락 사고 시 사고지점의 전압은 매우 크게 발생하므로 80A가 동작하기에 충분한 것으로 나타났다. 하지만 고장저항(**R**)이 증가할수록 사고지점(mid point)의 전압은 점점 낮게 발생하며, 80A의 동작 값을 850[V]로 설정할 경우 고장저항이 0.1[Ω]보다 큰 단락사고 발생시에는 고장이 감 지되지 않은 것으로 나타났다.

또한, 50F의 동작을 유무를 확인하기 위해 50F의 동작전류 값을 2 [kA], △t 값을 10 ms로 설정하여 △I을 측정하였으며, 이 경우 고장 저항이 큰 단락사고의 경우에도 고장을 감지하는 것으로 나타났다. 표 4는 사고저항의 변화에 따른 △I 값과 사고지점 전압을 나타내며, 그에 따른 50F 및 80A의 동작여부를 나타낸다.

Accident resistance (R_f)	Short-circuit current & Accidents voltage (I_{sc}, V_{faul})	Accident before	Accident after	Whether of the protection relay operation	
				50F (2kA)	80A (850V)
0 [Ω]	Isa	0 [kA]	4.382 [kA]	0	
	V_{faul}	1820 [V]	130 [V]		0
0.1 [Ω]	Isa	0 [kA]	3.193[kA]	0	
	V_{faul}	1820 [V]	863 [V]		×

Table 4 Simulation results & whether of the protection relay operation

3. 결 론

본 연구에서는 직류전기철도의 급전계통인 DC 1,500V 전차선로 양단의 고장선택계전기 50F 와 Midpoint Relay 80A의 동작특성을 비교하기 위해 PSCAD/EMTDC를 이용하여 시뮬레이션 하였 다. 연구분석 고찰한 결과, 80A를 사용하는 경우는 고장저항 크기와 관계가 있어 고장저항이 적을(0~0.08[Ω]) 경우에는 동작하였으나 0.1[Ω]이상이면 동작하지 않는 것으로 나타났다. 그러나 50F(고장선택계전기)의 경우는 고장저항의 크기나 선로 길이가 변하더라도 고장발생 시점에서 약 0.01[sec] 지나면 고장전류의 크기가 50F 동작설정 값보다 크게 되어 동작하였다. 따라서 80A와 50F의 동작특성만으로 단순 비교하면 50F의 보호성능이 우수하다고 판단된다.

참고문헌

- (1) 정현기, 정종진, 안태풍 (2008) "지하철 직류보호계전시스템의 동작특성에 관한 연구",
 한국철도학회 학술대회논문집, pp 499-463
- (2) JR교본연구회 (2003) "급전회로 보호시스템"
- (3) Myung-Hwan Min, Ho-Sung Jung (2010) "A Study on the Real Time Measuring Technique of Return Current in the DC railway System", 16th International Conference on Electrical Engineering